
Appendices

to the book:

Who Wrote the Bible Code?

by Randall Ingermanson

Appendices A through D are intended for technical readers who would like to verify the

correctness of the results reported in my book Who Wrote the Bible Code? My intent is that the

main ideas of the book should be understandable without reading these appendices. The math to

be presented here should make sense to someone with an undergraduate degree in math, science,

engineering, or related disciplines.

Who Wrote the Bible Code? Appendix A

A-1

Appendix A: Statistics

Elementary Statistics

First, we’ll discuss some elementary statistics. A standard reference for this is Numerical

Recipes in C: The Art of Scientific Computing, Second Edition, by William H. Press, et. al.,

Cambridge University Press, (1992). The following summarizes the discussion in Chapter 14 of

that book.

Suppose we are measuring some quantity x. Generally, each measurement will have

some small error, so we’ll make more than one measurement. If we have a set of N

measurements {x1, x2,…, xN}, we define the mean:

x ≡
1

N
xi

i=1

N

∑ (A1)

We define the standard deviation

∆x ≡
xi − x()2

N −1i =1

N

∑ (A2)

Who Wrote the Bible Code? Appendix A

A-2

In the text, we’ll generally call this number the “spread.” We’ll denote the actual value

of x by x .

We’ll make the conventional assumption in this book that, for the statistical ensemble of

all sample sets of size N, the mean x is a random variable with a distribution that is

approximately Gaussian, with a mean of x and a standard deviation

=
∆x

N
(A3)

We’ll refer to this in the text as the “Law of Large Numbers.”

When comparing two members of this statistical ensemble, that is, two means x1 and x2
,

each with a standard deviation ∆x1 and ∆x2
, the difference between the two means is a random

variable with a composite standard deviation given by:

∆xdiff = ∆x1

2 + ∆x2

2
(A4)

If the sample sizes N1 and N2 are less than about 30, then this difference is governed by

Student’s t-distribution. For larger samples, this distribution converges to Gaussian statistics.

We’ll always work with samples large enough to justify using a Gaussian distribution.

Binomial and Gaussian Statistics

A good reference for binomial statistics is Fundamentals of Statistical and Thermal

Physics, by Frederick Reif, McGraw-Hill, Inc. (1965). The following is taken from Chapter 1 of

that book.

Consider a simple random experiment that can have two outcomes. An example is

flipping a coin. We don’t assume that the coin is fair; it may be specially designed to come up

Who Wrote the Bible Code? Appendix A

A-3

heads more often than tails. We’ll denote the probability of heads by some value p between 0

and 1. The probability of tails is therefore 1 − p .

If we conduct an experiment in which we flip the coin N times, we’ll observe some

frequency of heads F. Note that F must be an integer between 1 and N.

Now flipping a coin is a random process, so we can’t expect to predict the value of F for

our experiment. However, if we conducted an infinite number of such experiments, then the

mean value of F would converge to a quantity F , the “expectation value” of F. This

expectation value can be computed exactly, and its value is

F = Np (A5)

We can also calculate the expected value of the standard deviation of F exactly:

∆F = Np(1 − p) (A6)

Now any experiment of N coin-flips will yield not only a frequency F, but also an

estimate P of the probability p. That estimate is given by:

P =
F

N
(A7)

The expectation value of P is p, of course. We can also calculate the expectation value of

the standard deviation of P. It’s convenient to denote this by ∆p:

∆p ≡ ∆P =
p(1 − p)

N
(A8)

For binomial statistics, one can show that, for N large, P is approximately normally

distributed about p—that is, it’s governed by Gaussian statistics. It’s convenient to normalize a

Gaussian distribution. Here, we do so by assigning a value Z to each measurement P, as follows:

Z ≡
P − p

∆p
(A9)

Who Wrote the Bible Code? Appendix A

A-4

Z is informally called the “Z-score” in the main text of this book. There, we don’t

distinguish between Z-scores for the distributions of P and F, since these distributions are related

by a trivial transformation. Their Z-scores are therefore identical.

One can estimate the statistical significance of a given value of Z using the

complementary error function erfc(Z), which measures the probability that a random process

could yield a Z-score as large in magnitude (and with the same sign) as the observed Z:

erfc(Z) ≡
1

2
exp −

2t

2





 Z

∞

∫ dt (A10)

An implementation of erfc is given in Numerical Recipes. Spreadsheets also often

provide this function. In most scientific and statistical work, Z is considered significant if its

absolute value is greater than 2 or 3. In this book, we’ll be looking for extreme statistical

significance. The reason is that we’re searching for phenomena that would have extraordinary

implications. Therefore, we have a right to demand an extraordinary level of evidence.

There is no commonly accepted definition of “extreme statistical significance.” I’ll

simply define it here to be a Z with absolute value greater than 5.

Poisson Statistics

An interesting special case of binomial statistics occurs when p approaches zero. This

would be the case with a very unfair coin! Of course, binomial statistics apply to other

experiments besides coin-tosses. An example would the probability of finding a misspelled word

in some given textbook.

We again consider an experiment with N trials, and now we denote the expected

frequency by λ, which is the conventional notation for Poisson statistics:

Who Wrote the Bible Code? Appendix A

A-5

= Np (A11)

We’re interested in the case where p is small. One can then show that an approximation

for the probability W(k) of observing k events in N trials is:

W(k) =
k

k!

−
e (A12)

This probability distribution will be very useful in studying the probability tables of two-

letter clusters — “digrams” — and three-letter clusters — “trigrams” — in natural languages. In

English, the most frequent digram is “th,” which occurs with a probability of about 3.7%. Most

digrams and all trigrams occur much less frequently than this, and so Poisson statistics provide a

useful tool for analyzing them. We discuss digrams and trigrams at length in Chapters 7 through

12.

Who Wrote the Bible Code? Appendix B

B-1

Appendix B: Chi-squared Analyses

Definition of Chi-squared Statistics

In Appendix A, we discussed random experiments in which each trial could yield one of

two possible outcomes. An example is flipping a coin. Here, we’ll generalize those ideas to

experiments in which a trial can yield one of several possible outcomes. An example is dice

rolling. Most of these ideas are explained quite well in Section 14.2 of Numerical Recipes, cited

in Appendix A. We’ll develop the equations first for dice, and then generalize.

Each die has six sides. If the dice are fair, then any of the sides will come up with equal

probability. If the dice are not fair, then each number will come up with some characteristic

probability. We’ll denote by p1 the probability of a given die coming up 1, and so on for 2

through 6. Whether a die is fair or not, the six probabilities pi satisfy a constraint:

ip
i =1

6

∑ = 1 (B1)

Who Wrote the Bible Code? Appendix B

B-2

We say that the 6 probabilities pi have 5 “degrees of freedom,” since we could use any 5

of them to determine the sixth.

As in Appendix A, we could perform an experiment by rolling a die N times and

recording the observed frequencies Fi for each of the six possible outcomes. From the

frequencies, we then compute estimates of the probabilities:

iP =
Fi

N
 (B2)

Just as in the case of the binomial distribution, these will be randomly distributed with a

mean of pi and a standard deviation:

∆pi ≡ ∆P =
pi (1 − pi)

N
(B3)

For each measured probability Pi we can define a Z-score which measures the normalized

deviation of the observed value from the expected value:

Zi ≡
Pi − pi

∆p
(B4)

Unfortunately, these are six numbers, and we’d prefer to work with only one, a number

representing the aggregated deviation of all observed values from their respective expected

values. Also, we’d like to have some function like erfc that allows us to determine the statistical

significance of our results.

The well-known solution is to define the chi-squared statistic:

2 ≡ Z i

2

i=1

6

∑ (B5)

If any of the quantities Zi is large, then chi-squared gets very large. Now notice that if the

Zi’s are distributed according to Gaussian statistics, then the expected contribution of each term

should be 1. Actually, because of the constraint (B1), the expected contribution is a bit less than

Who Wrote the Bible Code? Appendix B

B-3

1. The net result is that the expectation value of chi-squared is just about equal to the number of

degrees of freedom, which we’ll call D from here on.

Chi-squared can be larger than D, but we don’t expect it to be very much larger. We

need a way to quantify this statement, so that we can assign statistical significance to a chi-

squared analysis.

Measuring the Statistical Significance of Chi-squared

Just as the statistical significance of Z could be determined using the function erfc, the

statistical significance of chi-squared can be determined using the incomplete gamma function.

As explained in Section 6.2 of Numerical Recipes, there are actually two functions that go by this

name, and they’re complementary to each other. The one we mean is defined as:

Q(a, x) ≡
1

Γ (a)
e

−t
t

a −1
dt

x

∞

∫ (B6)

Suppose we’ve done a chi-squared analysis with D degrees of freedom and have

computed a value
2
. For a random process, the probability of observing a value as large as the

one we measured is given by:

Q
D

2
,

2

2









 (B7)

As with erfc, the function Q is implemented in Numerical Recipes and in many

spreadsheet programs. There is an error in the algorithms printed in both the first and second

editions of Numerical Recipes. I discovered the error early on in my testing of the software for

this book. The problem was a failure to check convergence of a series before terminating it. My

Who Wrote the Bible Code? Appendix B

B-4

software contains the correct algorithm; let the reader beware who trusts blindly in the printed

recipe!

A more important point is that the function Q gives an accurate estimate of the statistical

significance of chi-squared only if the standard deviations ∆pi
 have been accurately estimated.

As discussed in Numerical Recipes, good error estimates are not always easy to come by. This

can cause a poor estimate of the statistical significance.

For example, if these standard deviations are systematically off by 10%, then the value of

chi-squared will be systematically off by about 20%. For a large number of degrees of freedom,

this will translate into a fairly serious error in the estimate of statistical significance.

Because of this problem, we’ll use a different method of estimating statistical

significance in this book, one that allows us to correct for systematic errors very accurately. The

method is simple enough that we’ve explained it in Chapter 11. The idea is to regard the chi-

squared statistic itself as a random variable. By doing a large number of chi-squared analyses,

we can determine the mean and standard deviation of this statistic for two different populations.

Then we compare them by calculating a composite Z-score for the difference of the two means,

as discussed in Appendix A. The composite Z-score supplies us with an estimate of statistical

significance. Any systematic errors in the standard deviations used in the chi-squared analyses

will apply to both populations. So taking the difference effectively eliminates the systematic

errors.

This method works much better than using the incomplete gamma function does.

Generalizing Chi-squared

Who Wrote the Bible Code? Appendix B

B-5

The formulae above were motivated by the example of rolling dice. It is trivial to

generalize them to an arbitrary random process with multiple outcomes. If there are n possible

outcomes, then we define the probabilities pi where the index now ranges from 1 to n.

The constraint is now:

pi =1
i =1

n

∑ (B8)

and the number of degrees of freedom D becomes:

D ≡ n −1 (B9)

The chi-squared statistic generalizes to:

2 ≡ Z i

2

i=1

n

∑ (B10)

In this book, we’ll apply a chi-squared analysis to the observed probability tables of

digrams and trigrams. For a text with known letter probabilities, we can compute the exact

probabilities of randomly choosing any given digram or trigram. The chi-squared analysis then

lets us compare the exact theoretical probabilities to the actual observed probabilities. Some

technical issues are discussed in Appendix D.

Who Wrote the Bible Code? Appendix C

C-1

Appendix C: Entropy

Definition of Entropy

Entropy is a widely used concept in information theory. My favorite reference on

entropy and information theory in general is An Introduction to Information Theory: Symbols,

Signals and Noise, by John R. Pierce, Dover Publications, Inc., (1980). This book covers the

topic at a popular level and discusses many interesting ideas on language, including lots of

information on digrams and trigrams.

We’ll define entropy first, and then explain why this weird looking definition is actually

useful. Consider a message encoded using a set of n symbols. Measure the frequencies at which

each of the symbols occurs in the text, and divide by the number of symbols in the text to

compute a set of observed probabilities Pi. Then the entropy h is defined as:

h = − Pi log2 Pi

i =1, Pi ≠ 0

n

∑ (C1)

Let’s discuss this formula in detail.

Who Wrote the Bible Code? Appendix C

C-2

First, why the minus sign? Note that all of the Pi‘s are less than or equal to 1. Therefore,

their logarithms are all negative. We’d like entropy to be a positive number, so we throw in a

leading minus sign.

Second, why the restriction Pi ≠ 0 in the sum? L’hopital’s Rule implies that in the limit

of Pi → 0 , the contribution to the sum vanishes.

Third, what’s the meaning of it all? The short answer is that entropy counts the minimum

number of bits per symbol required to encode the message. If the message is highly redundant,

then not many bits are needed since we could find a way to encode the message without so many

symbols. If the message is completely random, then we have to encode every single symbol, and

the entropy is then just a measure of how many bits are required to encode a single symbol.

Let’s consider some examples.

Suppose our message is a report of the results of a coin flipping experiment. We could

let 0 represent tails and 1 represent heads. The message might look something like this:

0111001000011010111011000110010001001011010101011010100

If the coin is fair, then we should see equal numbers of heads and tails. Then

P0 = P1 =
1

2
(C2)

It’s trivial to calculate the entropy in this case: h =1.

Since we have only two symbols, 0 and 1, we can represent each symbol with only 1 bit.

We see that in this case, as we claimed, the entropy is equal to the number of bits required per

symbol.

Now suppose the coin were biased. Suppose it comes up heads only once in a million

times. A piece of the message might look like this:

000

Who Wrote the Bible Code? Appendix C

C-3

Do we really need to encode each one of these 0’s? No! We could instead just encode

the number of 0’s between each 1. That would be much more efficient, and would lose no

information. You can easily dream up an infinite number of possible ways to encode the data.

The entropy is easily calculated using (C1): h = 2.14 ×10
−5

. That is, the message requires only

21.4 bits per million symbols in order to encode the complete message with no loss of

information. The entropy is low and the redundancy is high.

Now suppose we have an alphabet with n characters, and our message is created by

randomly choosing characters. (For example, a monkey playing on a typewriter.) Since each

character has an equal probability of appearing at any point in the message, we have:

Pi =
1

n
(C3)

Then we immediately find the entropy:

h = log2 n (C4)

For a 2-letter alphabet, the entropy is 1. For a 4-letter alphabet, the entropy is 2. For an

alphabet with 2
n
 characters, the entropy is n. In each case, the entropy is the number of bits

needed to make the simplest possible binary encoding of the alphabet.

For extra credit, you can use the calculus of variations to show that (C4) is the maximum

entropy possible, only achieved when (C3) holds. (Hint: account for the constraint (B8) using a

Lagrange multiplier.)

Application to Real Texts

The digits of π should be randomly distributed among the ten symbols 0 through 9. So

we expect the entropy of a text containing the digits of π to be:

Who Wrote the Bible Code? Appendix C

C-4

h = log2 10 =3.321928... (C5)

In fact, this is very close to the entropy we actually measured in Chapter 8 on the first

fifty thousand digits of π. The measured value is 3.321842. The discrepancy is due to the fact

that the digits aren’t exactly equally distributed. In a random text, there is bound to be a little

variation, as we discussed in Appendices A and B. The variation is at about the level we expect,

so there’s no cause for alarm.

For the English alphabet, which has 26 characters, we expect the entropy of a completely

random text to be

hrandom = log2 26 = 4.7004397... (C6)

This is not what we actually measure for any real, meaningful English text. English, like

every language, has some redundancy, which lowers the entropy from the maximal value (C6).

For a typical adult-level English text, the entropy computed using the observed letter-probability

table is about 4.14. A text like The Cat in the Hat, which has a reduced vocabulary, will have a

smaller entropy.

When the symbols being studied are digrams and trigrams, there are some extra wrinkles.

First off, if we want to compare apples to apples, the formula for entropy (C1) needs to

be divided by a factor of 2 (for digrams) or 3 (for trigrams). The reason is that entropy measures

bits per symbol, but we want to compare bits per character. So we need to divide by characters

per symbol. This allows us to do a meaningful comparison of the digram and trigram entropies

to the letter entropy.

Second, as we discussed in Chapters 8 and 9, natural languages have digram and trigram

probability tables that can’t be computed naively from the letter probabilities.

Who Wrote the Bible Code? Appendix C

C-5

For example, the digram “qe” is much less common than the digram “qu,” even though

the letter e is much more common than the letter u.

As another example, the trigram “eee” is quite rare in English, even though it “ought” to

be the most common trigram, based on the letter probability tables (since e is the most common

letter).

Because of this, when you compute the entropy of a text based on the digram probability

table, you get a smaller entropy (corresponding to higher redundancy) than you do with the letter

probability table. Likewise, the trigram table gives an even smaller result for the entropy.

Third, there’s an even subtler effect that shows up very clearly when you look at short

texts. We mentioned this in passing in Chapter 10, and promised an explanation in the

appendices. Here is that explanation.

Finite Size Text Effects

Imagine taking an infinitely long English text and measuring its entropy using the letter

probabilities. We know that the digram table would give a different entropy, because English

has correlations between letters in the digrams. Suppose we scramble this infinite text,

eliminating all these correlations. Now the digram table is exactly what you’d predict based on

the letter probabilities, and the digram entropy is identical to the letter entropy.

This does not hold true for a finite text.

Since we have 26 letters, there are 676 possible digrams and 17,576 possible trigrams.

We haven’t changed the letter probabilities, so letters like q and z are still pretty rare. That

Who Wrote the Bible Code? Appendix C

C-6

means that digrams like “qq”, “qz”, and “zz” are also rare, even in a fully randomized text. The

same can be said of trigrams like “qqq.”

Say the original text is only a thousand characters long. Then we’ll observe only 999

digrams and 998 trigrams. This is true of both the original text and the randomized text. Some

digrams probably won’t appear at all, and most trigrams won’t.

 This means that we’ll observe zero probabilities for certain digrams and certain trigrams.

It’s not that they actually have zero probability. The problem is that we aren’t looking at enough

text to measure a nonzero probability.

But remember that formula (C1) excludes any symbols with a measured probability of

zero. So those digrams and trigrams won’t contribute to the entropy.

It’s possible to estimate this effect very accurately. In what follows, I’ll refer only to

digrams, but the same analysis applies also to trigrams. We consider the statistical ensemble of

all possible randomized texts of a given length with a given letter probability table. Now we ask

what is the expectation value of the digram entropy we should observe.

The first step is to use the results of Appendix D to compute the theoretical probabilities

of all possible digrams. We’ll denote these probabilities by pi. If a given randomized text

actually has N digrams in it, then the expectation value of the frequency of each digram is given

by:

i = Npi
(C7)

It’s important to remember that these are theoretical probabilities and frequencies we’re

dealing with here. Real observed frequencies have to be integers. The
i
’s are not integers, and

many of them may be less than 1. The probability that, in a given text, a given digram will occur

k times is given by (A12). If a digram occurs k times, then its observed probability Pi will be:

Who Wrote the Bible Code? Appendix C

C-7

Pi =
k

N
(C8)

So we can estimate the expectation value (over the ensemble of randomized texts) of a

given digram’s contribution to the entropy:

hi = − Wi(k)
k

N







k= 0

∞

∑ log2

k

N





 (C9)

Finally, we estimate the expectation value of the entropy of a randomized text:

h = hi

i =1

N

∑ (C10)

For small values of
i
, (C9) can be evaluated directly on a computer. For large values,

it’s smarter to do a power series expansion about the point k = i
, and calculate only the first few

terms. It’s a bit tedious to compute this expectation value for digrams and trigrams. My

software does this calculation. The results agree very well with the actual observed entropies for

random texts.

One problem I have not solved is how to compute the standard deviation of the expected

entropy. It sounds easy until you try it. Then the mathematics gets a bit ugly.

It’s not really necessary to calculate the standard deviation, however. (In fact, it’s not

necessary to evaluate (C10), either, except as an intellectual exercise to understand why the

observed entropies are less than naively expected.) We can simply randomize a large number of

texts and measure the mean entropy and the standard deviation. My software does this

calculation also, since it’s required for the sort of ultra-precise measurements described in

Chapters 11 through 14.

Who Wrote the Bible Code? Appendix D

D-1

Appendix D: Technical Notes on Digrams and Trigrams

Theoretical Probabilities of Digrams and Trigrams

Suppose we’re given a text of length N composed using an alphabet having n characters

{c1,c2 ,..., cn}. We can measure the frequencies fi of the n characters and construct the letter

frequency table. We then define the letter probabilities pi:

pi =
f i

N
(D1)

We often speak of the probabilities and frequencies interchangeably in this book, since

we can deduce one set from the other, given N.

We’re interested in scrambling the letters of the original text and measuring its properties.

Some of these are obvious. Scrambling the text won’t change the number of each kind of letter,

so the observed letter probabilities Pi of the scrambled text will be identical to those of the

original text, pi.

An important question is what is the spread ∆Pi
 in the observed probabilities Pi? The

answer depends on exactly how we do the scrambling.

Who Wrote the Bible Code? Appendix D

D-2

One possible process is the following. Choose a letter at random from the text. Then

choose a second letter at random from the remaining letters. Continue in this way, choosing

letters without replacement until the original pool of letters is empty. At any position in the

scrambled text, the probability Pi of finding a given letter ci is exactly pi. (This is true, even if

the letters in the original text were highly ordered.) Therefore, the spread in the observed letter

probabilities of a random text is exactly zero.

That, however, is not exactly the process we want to model. We’re interested in studying

skip-texts constructed by taking sequences of letters at equal intervals. This process is fairly

close to being random, but even at skips of a few thousand characters, we expect one effect to

come into play — the fact that the text has a storyline.

For example, compare the first and second halves of Genesis in any English translation.

Because Jacob and Joseph play starring roles in the second half of the book, the letter j occurs

somewhat more frequently in that half. In the section on Abraham, we’re going to see the letter

a just a bit more frequently than usual. So if we’re skipping through the Abraham section, our

skip-text will have more a’s than usual. Later, in the Jacob and Joseph sections, our skip-text

will get more j’s than normal. So the observed letter probabilities for a given skip-text will

depend just slightly on the position within the text. There is no exact way to model this, but we

can do an excellent job by ascribing a spread to the letter-probabilities Pi.

As an approximation, by analogy to (A8), we’ll estimate the spread in the Pi’s for skip-

texts to be:

∆Pi =
pi(1 − pi)

N
(D2)

Who Wrote the Bible Code? Appendix D

D-3

Next, we want to compute the theoretical probability of randomly choosing a digram.

Denote an arbitrary digram as “cicj” and denote its theoretical probability by pij. For a purely

random process, we expect:

pij = pip j
(D3)

Likewise, the theoretical probability pij...k of randomly choosing an arbitrary sequence

“cicj...ck” is given by:

pij... k = pi pj ...pk
 D4)

(D3) and (D4) are commonly agreed to be the correct probabilities for uncorrelated

sequences of characters. Even for weakly correlated sequences, such as skip-texts at large skips,

these probabilities must be correct on average.

Now we want to compute the spreads we’ll observe for these quantities. Again, the

answer depends on which random process we are modeling. For the completely random process

we described above, the process obeys binomial statistics. By (A8) the spread in the observed

probabilities will be:

∆pij

(random) =
pip j(1− pi pj)

N −1
(D5)

But this doesn’t account for the storyline. Because of the slight variations of letter

probabilities at different points in the story, there will be just a bit more variation in the digrams.

We compute this extra contribution from (D3) using the chain rule:

∆pij

(chain) = pi∆Pj + pj∆Pi
(D6)

A similar expression holds for sequences of characters of arbitrary length.

This is all only an approximation to the true situation. We don’t fully understand the

literary processes which formed the text, and we never will, but we can be sure they were not

Who Wrote the Bible Code? Appendix D

D-4

random! We’ll model the actual spread in the digram probabilities as a combination of (D5) and

(D6), and the simplest combination is to just sum the variances:

∆pij

(total) =
2

∆pij

(random)() +
2

∆pij

(chain)() (D7)

This expression for the spread is used in the chi-squared analyses of digrams and trigrams

throughout this book. As we pointed out in Appendix B, small errors in estimating the spread

can shift the chi-squared statistic up or down somewhat. The result is that the statistical

significance test using the incomplete gamma function is not all that trustworthy. That’s why we

don’t use that test for significance in this book. Instead, we average the chi-squared results for a

large number of random texts and a large number of skip-texts prepared in the same way.

That leads to an important question. Exactly how should we prepare our random texts?

We’ll discuss that next.

Preparing Random Texts

As we saw in the previous section, the fact that our texts may have a storyline can lead to

subtle effects. In this book, we’re interested in comparing skip-texts to random texts. But what

does “random” mean? What randomization process can we use to eliminate the effects of the

storyline?

Our procedure is simple. When we randomize a text, we divide it up into blocks of a

certain length B. (The last block generally will have fewer than B characters in it.) Then we

randomize each block separately using the fully random procedure mentioned in the previous

section. This produces a fairly random text with the same large-scale properties as the original.

(Scrambling the English text of Genesis in this way will produce a text with more j’s in the

Who Wrote the Bible Code? Appendix D

D-5

second half than in the first half.) Finally, from this randomized text, we produce a skip-text.

This last step tends to produce random texts with the same large-scale properties as the skip-texts

of the original.

Most of the experiments in this book study skip-texts with skips from 1 to about 150. For

each skip-text, we produce a matching randomized skip-text. This policy effectively cancels out

any systematic errors that might creep in as the value of the skip changes.

I have tested the results for different block sizes B and found little variation over the

range 50 to 1000. In this book, a value of B = 250 was used for all calculations shown. In

principle, B might be considered a free parameter in the analysis, but in fact the results are

independent of B over a wide range.

A Technical Note on Chi-squared Analyses

In this book, we perform chi-squared analyses to compare the observed probability tables

of digrams and trigrams to the theoretical probabilities. Some letters are rare. For example, in

English, q and z are rare. Digrams containing rare letters tend to be very rare. Trigrams

containing them tend to be exceptionally rare.

It turns out that many of the digrams and the great majority of the trigrams are so rare that

they aren’t expected to occur at all in texts of a few tens of thousands of characters. We’d rather

not have the chi-squared analysis be dominated by these “unimportant” digrams and trigrams.

Therefore, the software has been written to ignore those digrams or trigrams expected to occur

less frequently than some threshold value fmin, the minimum frequency. For all analyses in this

Who Wrote the Bible Code? Appendix D

D-6

book, I’ve chosen fmin to be 1. Again, this is an apparent free parameter that turns out not to

make much difference in the final results, except to reduce noise.

For entropy calculations, a similar restriction naturally happens by the very definition of

entropy. Unless a digram or trigram actually occurs, it doesn’t contribute to the entropy. We

saw in Appendix C that this fact tends to reduce the measured entropy for small texts. We

showed how to estimate this reduction theoretically. Note that in this case, there is no free

parameter that could be tuned.

	Appendices Cover Page
	Appendix A: Statistics
	Elementary Statistics
	Binomial and Gaussian Statistics
	Poisson Statistics

	Appendix B: Chi-squared Analyses
	Definition of Chi-squared Statistics
	Measuring the Statistical Significance of Chi-squared
	Generalizing Chi-squared

	Appendix C: Entropy
	Definition of Entropy
	Application to Real Texts
	Finite Size Text Effects

	Appendix D: Technical Notes on Digrams and Trigrams
	Theoretical Probabilities of Digrams and Trigrams
	Preparing Random Texts
	A Technical Note on Chi-squared Analyses

